89 research outputs found

    Optical Lattice Trap for Kerr Solitons

    Full text link
    We show theoretically and numerically that dichromatic pumping of a nonlinear microresonator by two continuous wave coherent optical pumps creates an optical lattice trap that results in the localization of intra-cavity Kerr solitons with soliton positions defined by the beat frequency of the pumps. This phenomenon corresponds to the stabilization of the Kerr frequency comb repetition rate. The locking of the second pump, through adiabatic tuning of its frequency, to the comb generated by the first pump allows transitioning to single-soliton states, manipulating the position of Kerr solitons in the cavity, and tuning the frequency comb repetition rate within the locking range. It also explains soliton crystal formation in resonators supporting a dispersive wave emitted as a result of higher-order group velocity dispersion or avoided mode crossing. We show that dichromatic pumping by externally stabilized pumps can be utilized for stabilization of microresonator-based optical frequency combs when the comb span does not cover an octave or a significant fraction thereof and standard self-referencing techniques cannot be employed. Our findings have significant ramifications for high-precision applications of optical frequency combs in spectrally pure signal generation, metrology, and timekeeping.Comment: 13 pages, 12 figure

    On fundamental diffraction limitation of finesse of a Fabry-Perot cavity

    Get PDF
    We perform a theoretical study of finesse limitations of a Fabry-Perot (FP) cavity occurring due to finite size, asymmetry, as well as imperfections of the cavity mirrors. A method of numerical simulations of the eigenvalue problem applicable for both the fundamental and high order cavity modes is suggested. Using this technique we find spatial profile of the modes and their round-trip diffraction loss. The results of the numerical simulations and analytical calculations are nearly identical when we consider a conventional FP cavity. The proposed numerical technique has much broader applicability range and is valid for any FP cavity with arbitrary non-spherical mirrors which have cylindrical symmetry but disturbed in an asymmetric way, for example, by tilt or roughness of their mirrors.Comment: 15 pages, 10 figure
    • …
    corecore